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Chemical Equilibrium

1.  Equilibrium conditions

In previous sections, the term “equilibrium” has been used with
different connotations. The more familiar meaning is that a system
resides at an “equilibrium” position, as defined by a mechanical

[Mechanical Equi“briuml potential 7. This case is illustrated on the

left, where a ball is shown in metastable
metastable (unstable) mechanical equilibrium (top
v equilibrium part) or stable mechanical equilibrium

T . (bottom part). In either case, the first de-
/'\ rivative of the potential, the “driving
»x force” F=-dy/dx vanishes, and the sys-

L tem does not undergo any spontaneous

4~ equilibrium ) . i .-
point (irreversible) transitions. For an equilib-
__ riumto be stable against small influences
\!/ ** " on the system of interest, the potential has
to be concave, like at the bottom of Fig.1.
stable Therefore, a stable equilibrium requires

Figurelequfﬁbur ::':;:f:of oemis L€ Second derivative of the potential to
be negative, dF/dx = - d?V/dx?< 0, at the

equilibrium point.

A second, different type of “dynamical” equilibrium was intro-
duced in the context of entropy S, involving the number or density
of (micro-)states, €2, of the system (and its surroundings). It was
shown, that it is the entropy, rather than a simple mechanical po-
tential energy, that drives a system towards the ultimate state of
thermal equilibrium. However, the energy always plays an im-
portant role. According to the First Law of Thermodynamics, the
total energy (of system and surroundings) is conserved. Therefore,
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the effect of the energy must reside in the prospects of its redistri-
bution between system and surroundings.

How to find the situation of equilibrium of a thermodynamic
system has been discussed previously. In these procedures, one
needs to consider both, the system and its surroundings. For appli-
cations, it is important to know the properties of the surroundings,
or better perhaps, it is important to know how to design the most
appropriate surroundings of a system of interest, which may be an
industrial reactor. For a detailed discussion of the important ther-
modynamic processes, however, it would be more desirable to be
able to concentrate on the system and disregard the (well-under-
stood) surroundings. This leads to the introduction of thermody-
namic potentials or free energies.

2.  Thermodynamic Potentials

Thermal Equiibriom_| Thermodynamic  equilibrium is
reached in a process when the system
stable at interest reaches a point of maximum
equilibrium .
S total entropy of both, the given system
‘l‘ /‘-T"’S—K”\ and its surroundings,
| | px dStotal = dSsys + dSsurr =0 (1)
equilibrium
point The combination of system and its

Figure 2: Entropy vs. extent of process, ~ SUrroundings can be considered to

point of stable equilibrium is marked ConStitute an iSOIated, homogenOUS

system, a system that has a uniform

temperature T =const. For a reversible process involving such an
isolated system, there is no net heat loss or gain. Hence,
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dQtotal = dQsys + dqsurr = 0 (2)

and
dSsys = dqsyS/T: - dSSUI’I’ (3)

Inserting this expression into Equ. 1 leads to the following refor-
mulation of the equilibrium condition of system and surroundings,

dqsyslT - dSsys =0 (4)
or
dCIsys - T'dssys =0 (48.)

But now the equilibrium condition is expressed completely in terms
of properties of the system. The properties of the surroundings have
been eliminated. In the following, the subscript ‘sys’is, therefore,
omitted.

For processes that occur under conditions of constant pressure,
the process heat dq evolved is given by the enthalpy dH. In terms
of the enthalpy, a system is in equilibrium, when

dH - T-dS=0 (5)

Since the temperature T (=const.) is here just a constant parame-
ter, Equ.5 represents the differential of the “Gibbs Free Energy”

G=H-T-S (6)

Therefore, one can say that a system exposed to a constant pressure
(and constant temperature) is exactly then in equilibrium, when
the Gibbs free energy is at its minimum. Here, dG =0 corresponds
to S = Smax. As long as a system is not yet in equilibrium, one has
S < Smax and for a process dS > dqg/T, i.e., the heat dq absorbed
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(dg>0) by the system in the process is less than its maximum value
dgrev = TdS, or the heat released by the system (dg<0) is smaller
(larger in magnitude) than that, dqry = TdS, required by

the entropy change. For such, obviously irreversible, processes,

dG = dH - TdS = dg - TdS < 0 (7)

Thermodynamic
Driving Potential As long as Equ. 7 holds, spontaneous

G 4 (irreversible) processes can occur, which

increase the total entropy of system and

\L surroundings and, hence, drive the sys-

Gi [, tem towards equilibrium. The sketch il-

fj/ lustrates irreversible processes a system

Gy 3, will undergo spontaneously, if its initial

equilibrium state is situated somewhere on the slope

» of the G - function, either on the left or

_ Reaction Variable the right side of the minimum in G. The
Figure 3: Gibbs free energy vs. extent of e -

process. equilibrium of a thermodynamic system

Is reached by a system when its free en-
ergy is at its minimum value.

Gibbs free energy has, therefore, a function analogous to that of a
driving potential of a mechanical system.

A system with p=const. and T=const.
Is at equilibrium, when )
For irreversible processes: dG <0

The term "'system at equilibrium** really means *'system at equi-
librium with its surroundings™.
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For cases, where not the pressure, but the volume as well as the
temperature are held constant, V =const., T =const., an argument
Is made in analogy to Equ. 5: For such systems and processes, no
work is done and dq is equal to a change dU in internal energy.
Therefore,

dA := dU - TdS = dq - TdS <0 (9)

Since T (=const.) is here just a parameter, Equ. 9 represents the
differential of the “Helmholtz Free Energy”

A=U-T-S (10)

In other words, as long as the <sign in Equ. 9 holds, spontaneous
(irreversible) processes can occur, which drive the system towards
equilibrium. The Helmholtz free energy has, therefore, a function
analogous to that of a driving potential of a mechanical system.
The equilibrium of a thermodynamic system is reached by a system
when its free energy is at its minimum value.

A system with V=const. and T=const. is
at equilibrium, when
For irreversible processes: dA <0

It is important to realize that: As combinations of state functions,
both free energies G and A are state functions.

The quantities G and A are called “Free Energies”, because
the characterize the total energy available to a system (under the
conditions given by the surroundings).
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For example, a transition A— B of a sytem from state A to state
B may be energetically disallowed, as long as the system is isolated.
However, it can occur if the system is placed in a heat bath of high
temperature, such that it can access enough additional energy to
proceed.

Consider as an illustration the dissociation of hydrogen gas mol-
ecules in a thermally insulated container:

H, > 2 H (12)

Since Hy is bound, it is obvious that the enthalpy increases for the
dissociation, AH > 0. Energy would have to be supplied to the
system, i.e., the process would not be spontaneous. The equilib-
rium would be entirely on the left-hand side of the reaction. H;
would not dissociate, and free H atoms would spontaneously com-
bine to form Hy, in the reverse of the reaction 12.

The situation is quite different, when the system is immersed in
a heat bath and is held at a very high temperature T. Then, the net
free-energy balance for the dissociation reaction can be negative:

AG=AH(>0) -TAS(>0)<0 (13)

With increasing temperature, the second term in Equ. 13, -T4S,
can be made extremely large and negative, such that any effect of
AH > 0 can be counterbalanced and overwhelmed at high enough
temperatures. Then, dissociation of Hz will occur spontaneously,
because the energy is readily available to the system and delivered
by the surroundings. The temperature is a weighting factor that
determines the relative weights of enthalpy and entropy for a given
process A— B.
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It is useful to inspect the relation between the free energy (Gibbs
or Helmholtz) and the useful work that a system can provide. As
discussed before, it is important to consider work done in reversi-
ble processes. For irreversible processes, there is no unique rela-
tion between the entropy S and the work w done on or by the sys-
tem.

Consider first the case of constant temperature, T = const., but
possibly variable volume V and pressure p. For a reversible process,

dqrev =T-dS (14)

Then, changes in internal energy can be expressed in terms of the
entropy S and the reversible work dwey,

dU = T'dS + dWrev (15)
At constant temperature T, d(T-S) = T+dS, and one has
dwyey =dU-T-dS=d(U -T-S) =dA (16)

Therefore, a non-zero change in free (Helmholtz) energy indicates
that the system performs some work. The system does work, if dA
<0, itis being worked on if dA > 0.

In other words: The Helmholtz Free Energy of a system at T =
const. is a measure of the amount of the maximum reversible work
that the system can do. Of course, the reversible work is always
smaller than the irreversible work,

dA: d-\Nrev < dVvirr (17)
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For example, if dA < O for a certain process, the system can do

work during the process. The maximum work it can do is given by
dA = dw,,, | any irreversible process connecting the same initial
and final states of the system will lead to less work by the system,

|ewi, | <|ew,| = [dA (18)

for the case dA < 0, i.e., when the system does the work on its
surroundings.

For a spontaneous process A— B to occur, the condition
AAa_g <0 (19)

has to be fulfilled, since €w;, = 0 can be chosen as a possible

path for the transition A — B, and Equ.17 has still to be valid.
Hence, as long as the free energy A is not yet at its minimum, spon-
taneous (irreversible) processes can occur. When the minimum of
the Helmholtz Free Energy A is reached, no further work can be
obtained from the system. This is quite analogous to the potential
energy for a mechanical system.

The Gibbs Free Energy G = H - TS is also related to work for
systems at constant temperature and pressure, T = const. p =
const. This, one can see from the differential

dG =d(H-TS) =dH -TdS =d(U +pV) - TdS
=d(U-TS) + pdV = dA + pdV (20)
Here, one recognizes the term +pdV as the negative of the nor-

mal reversible pV- work done by or on gases. Hence, this trivial
pV term cancels in the definition of the change in Gibbs’ free energy.
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However, in a general process A—B, for example in a chemical
reaction, in a process in an electrolytic cell, or in the stretching of
an organic fiber, other types of work can also be done, for example,
bond-breaking, ionizing work, or elastic-deformation work. These

latter types of work are summarized by the notation deon—pV :

For example, in a gaseous dissociation reaction AB— A+B, the
number of moles of gas is changed, and pV work has to be done
(Expansion OfR”Mm.I against atmospheric pressure. This work is not

useful to the experimenter but has to be pro-
vided in the experiment. Gibbs Free Energy
contains these trivial amounts already and is,
! therefore, very convenient in practice to use.
The same is true for the expansion of a piece
Bl of a rubber-like substance. The rubber can
U39 transfer heat and do trivial pV - work. In addi-

fv tion, it performs work &W,,, ., against an ex-
Figure 4: swerching of a rubber t€NAI force fin proportion to the elongation
band. dl of the rubber, such that the differential of
the internal energy of the rubber can be written as,

dU =dq— pdV + fdll (21)
Then, Equ. 20 yields (for T, p constant)
dG = deon—pV (22)

and for the above example of the rubber expansion,

dG =f - dI (23)
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In analogy to what has been discussed before in the case of the
Helmholtz energy, spontaneous processes at constant p and T are
characterized by negative changes in Gibbs’ energy. Such processes
occur, until the minimum of G is reached. Then, no further work
can be performed by the system.

Thermodynamic relations of practical importance can be de-
rived from the structure of the free-energy differentials

dA = d(U - TS) = dU - SdT - TdS = (dqres -pdV) -SdT - TdS

or
dA = - pdV - SdT (24)

where use has been made of the relation dgrev - SAT = 0. Equ. 24
also implies that the Helmholtz energy is a function of only two var-
lables, Vand T, i.e., A=A(V,T).

On the other hand, the differential 24 can be expressed by defi-
nition as

dA(V,T)=(%j Vv +{%) dT (25)

Since Equs. 24 and 25 have to give the same result, for any change
dV or dT, one concludes that

JA JA
(%), s[5 =

if the system is in equilibrium with a heat bath of constant temper-
ature T.

Similarly, from the two following expressions



11

UNIVERSITY OF DEPARTMENT OF CHEMISTRY
Thermo Equil ~ W. Udo Schréder
ROCHESTER
dG=Vdp—SdT = ag -dp+ oG dT 27)
ap ), oT )
for the differential dG, one derives the following relations
V= (@j and S :_(@) (28)
opJ . T )

valid for a system in equilibrium with a heat bath of constant tem-
perature T and at constant pressure p, where the free energy is a
functionofpand T, G = G(p,T).

For an isolated system at temperature T, a similar consideration
for the internal energy U = U(V,S) yields

oU oU
-\, = (%) @

Since the variables describing a system, e.g., p and T for an iso-
lated system, can be expressed in terms of partial derivatives of state
functions, their partial derivatives are correlated according to the
Maxwell Relations. For example,

op) _ (u) (eou)  (eT
os), ~ \osev ). \avos),  \ov), GO
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because a second-order derivative does not depend on the order of
differentiation.

Such relations are of practical importance, since they allow one
to derive quantities that are difficult to evaluate from those that are
readily available. For example, it is easy to measure the expansion
coefficient, or equivalently, (sV/sT), of the volume of a system
upon raising its temperature, while it is difficult to measure (6S/s
p)r. Fortunately, these two quantities are related by Equ. 30.
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3. Free Energy in Chemical Reactions

A very important application of the concept of a free energy is in
chemical reactions, many of which are good examples of reversible
processes. For simplicity, assume that the system is in contact with
a large heat bath of constant temperature T, i.e., consider an iso-
thermal and reversible process A— B. This latter assumption sim-
plifies the case considerably for ideal gases, since for ideal gases,
the enthalpy H and the internal energy U depend only on temper-
ature and stay constant in an isothermal process. Then, the (Helm-
holtz or Gibbs) free energy is altered only by the exchanged heat

Qrev = TA4S.
AG=AH-T-AS= AU -T-AS =AA=-T-AS  (31)

Using the equivalence between entropy and reversible heat, the
free energy can be expressed as

AG = - Qrev = NRT In(Va/VB) = NRT In(ps/pa) (32)

Starting from the standard state at pa= 1 bar, where G
:=G°(p=1bar, T), one calculates the free energy at a different pres-
sure p from

G = G° + nRT In(p/1bar) (33)

or, with the implicit understanding that p be given in units of 1

bar,
G = G° + nRT In(p) | (33a)

expressed per mole, the molar free energy is given by

p=pu°+ RTIn(p) | (33b)
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where u@®,T) := dG/dn (here u := G/n) is the chemical potential
and u°M,T) = y°=1bar, T).

An approximately similar behavior of the

[Fugacity of Real Gases | frea energy can be observed not only for

7 ideal gas ideal gases, but also for real gases. This is
+ trivial for low pressures, where interactions
;'ﬁ”‘mfe in the real gas are unimportant. For higher

pressures, one can define an effective pres-

sure (the “fugacity” f) for a real gas, cor-

recting for the deviations of the real gas from

an ideal gas. Obviously, if one defines the
»  fugacity as

real gas

. P 0
1 bar { py }
Figure 5: Effective pressure vs. ac- RT
tual pressure at fixed T. Note that f =e ( bar ) (34)

standard state is not on fugacity
curve .

with the Gibbs energy per mole of 4 := G/n,
n moles of the real gas obey the relation

G=G°+nRTIn(f) (33c)

Therefore, the fugacity can be understood as an effective pressure
simulating ideal behavior of a real gas. Replacing the pressure in
a real-gas equation of state by the fugacity results in an EOS of
the type obeyed by an ideal gas.

This definition can be extended to substances other than gases.
Here, the ratio f/f(standard state) of the fugacity to that in the
standard state is called activity,

a = f/ f(standard state) (35)
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With these results, it is straight-forward to calculate the energy
balance in chemical reactions, allowing to make predictions about
whether or not they will occur spontaneously, even if the substances
are not in their standard states. Consider the reversible reaction

aA +bB &> yY +2Z (36)
— —
initial final

from initial to final state. Energies are extensive variables, hence,
the free energy in the initial state is the sum of the free energies of
both gases A and B. With ; defined as the molar Gibbs energy of
substance i, one has

Ginitial = Ga + Gg = aua + bus =
= (aua *+ bue)® + RT(a In pa+ b In pg)

Ginitial = GCinitiat + RT=IN[(pa)? - (pe)"] (37)
and similarly for the final state of the products

Gtinal = Gy + Gz =yuy + Zuz =
= (yuy +2412)° + RT(y In py + 2 In pz)

Gfinal = G%inal + RT'In[(pY)y ) (pZ)Z] (38)
Therefore, the change in Gibbs free energy is given by

AG = Ginal - Ginitial = AG° + RT-{In[(pv) -(pz)*]- In[(pa)? * (ps)°1}
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AG =AG® 4+ RT -In[ PPz

pA'

According to Equ. 8, as long as AG < 0, the reaction 36 will
proceed to the right. If AG > 0, the reaction will proceed to the
right, until reactants and products are present in a mixture for
which exactly AG = 0. This is the chemical equilibrium. Since in
equilibrium 4G =0, Equ. 39 yields

The ratio of the pressures of reactants and products defines the equi-
librium constant for the chemical reaction

i< B2 2
Pa - Pg

equ

Using this dimension-less equilibrium constant, one can express
the change in Gibbs’ free energy for the more general case of Equ.
39, inwhich the pressures are not equal to the equilibrium pressures,
as

AG = —RTInK°+RTIn(pY pZ]

P& - Pa (42)
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Note that the ratio of pressures in Equs. 40 and 41 is taken for
equilibrium pressures, while in Equs. 39 and 42, this ratio is cal-
culated for the actual pressures (see Equ. 32). All pressures are
expressed in units of 1 bar.

Because of the close relationship between the equilibrium con-
stant for a chemical reaction and the associated change AG°, one
can predict whether a reaction will proceed spontaneously or not just

from the magnitude of K. From Equ. 8, one knows that the reac-
tion will be spontaneous, if AG <0. then, according to Equ. 40,

InK8>O
K8>l

>

AG°<0
spontaneous reaction (43)

In equilibrium, Ky =1 and . 4G°=0

There are a number of formulations equivalent to Equ. 42, but
for concentrations or mole fractions. At constant pressure, the free
energy can then be expressed as

AG = - qrev = NRT In(ps/pa) = NRT In(ca/cs) (44)

Starting from the standard state at ca®:= [A]° = 1 mole/dm?3, where
G :=G° one calculates the free energy at a different concentration
from

G = G° + nRT In(ca/ ca°) (45)

or, with the implicit understanding that ca =[A] be given in units
of 1 mole/dm?,



18
UNIVERSITY OF DEPARTMENT OF CHEMISTRY

Thermo Equil ~ W. Udo Schréder
ROCHESTER

G = G°+ nRT In(ca) (45q)

For the reaction 1V.36, one derives then in a fashion very similar
to the above procedure for pressure,

(46)

AG=-RTIn Kf+RTIn(

[Y]'-[Z)
[A]°-[BT

for the change in free energy when a moles of A react with b moles
of B, to give y moles of Y and z moles of Z, at the various concen-
trations [i]. Here, the first term is again the free energy change with
the substances in standard states and in concentrations leading to
equilibrium,

AGO:-RT-m([Y]y'[Z]ZJ —_rT-mk?] @

[A]°-[B]°

Yet another alternative formulation makes use of partial pres-
sures or mole fractions xi. Here, the partial pressure of substance
1 is given in terms of the total pressure p:

pi = Xip (48)

However, the total pressure cancels in the corresponding equilib-
rium constant, if its derivation follows the above scheme:

(49)
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As before, the total change in free energy is given by

b

y o2
AG=—RTIn K°+RTIn£X %z ) (50)
X - X

with

z

b

Y.
AG®=—RT-In (wJ — —RT-InK° (51)
XA.XB equ

similar to the other notations discussed earlier.

A similar formulation can be derived for chemical reactions in
solutions. Here, one has to use fugacities or activities a (see
Equ.35) instead of pressures or concentrations.

Y Az
AG = —RTInK°+RTIn(a a} (52)
a a

The various equilibrium constants discussed above are all re-
lated to each other, e.g., they can all be expressed in terms of Kp,
multiplied by a power of the total pressure p or of pV.

Heterogeneous equilibria require special attention. Here, dif-
ferent phases of substances are involved. An example is the reac-
tion

CaCO;3; «» CaO(s) + CO2(9) (53)

The equilibrium constant for concentrations for this process is cal-
culated from

,_[Ca0]-[CO, ]

© = [CaCO, ] (54)
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For pure liquids and pure solids, the activities or concentrations
are takenasai=1and [i1] =1, respectively, which drop out of
any of the expressions for equilibrium constants and free energy
changes, since their activities and concentrations (mole per vol-
ume) do not change in a process. Then, the equilibrium constant
for the reaction 53 is simply given by the CO, concentration:

Ke=[ CO2] (55)

An important application of these concepts is the description of
the equilibrium of a solid salt and its saturated solution. Consider,
for example, the solution of silver chloride

AgCI(s) «» Ag*(aq) + Cl(aq) (56)

Here, the concentration [AgCI] and its activity aagci are constant.
Therefore, one combines them with the equilibrium constant to give
the solubility product

Ksp = [AQ™]-[CI'] = aag+ - acr (57)

expressed either in concentrations or activities.

4 Temperature Dependence of Chemical Equilibrium

In the preceding section, it has been shown how the equilibrium
“constant” K determines the outcome of a chemical reaction. This

constant, in turn, is given by changes AG° in the free energy of
reactants and products involved in the reaction. Of course, K| is

not really a constant. Already Equ. 40 suggests an exponential de-
pendence on the temperature. However, the free energy change AG°
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is itself dependent on temperature and pressure. Therefore, the
evaluation of temperature and pressure dependencies of the equilib-
T-Dependence of the rium constant of a chemical reaction has to

‘ Equilibrium Constant I be done in careful detail. In the following,
KO the temperature dependence (at constant

p - . -
n_ pressure) will be considered first.

According to Equ. 40, one needs the T
dependence of the combined function
AG®/RT =-InK_, i.e., one needs & (G/T )

2 T. According to Equ. 1V.28, one already
» has an expression for the rate of change of
Ut G with temperature:

oG
%) =

Since (cf. Equ. 6), G =H -TS, one can then write
oG
p

which is equivalent to (dividing Equ. 59 by T ?)

Figure 6:

H G 1(0G
A (60)
p

According to the product rule for differentiation applied to the prod-
uct G - (1/T), the r.h.s. of this equation is equal to the desired partial
derivative & (G/T Y2 T. Therefore, one also concludes that
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AT | T2 (61)

p

ey

This equation is usually called the Gibbs-Helmholtz Equation.
With this result, one can calculate the T dependence of the function
AG®/RT =-InK] as

JInKy  AH°
OT  RT?

(62)

This latter relation defines the Van’t Hoff Isochor. Since d(1/T) =
- (1/T?%), itis equivalent to

2InK;  AHC
21/T) R (63)

As discussed in earlier sections, the enthalpy and therefore its
change AH° is in general T-dependent. According to Kirchoff’s
Equation, it is related to the difference ACp in heat capacities of

products and reactants,
J(AH)
[ﬁ—Tj =AC, (64)
p

This difference depends on the number of moles of products minus
that of the reactants and is therefore in general non-zero even for
ideal gases. Thus, Equ. 63 is easily integrated only in certain cases.
However, one expects a characteristic dependence of the function
In K7 on the inverse temperature 1/T. If AH° ~ const, this function
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should be approximately a straight line, with a slope of -AH°/R, as
shown in the plot on the left.

If AH° were approximately independent of T, then one could in-
tegrate Equ. 63 resulting in

H 0
——+const. (65)

O—_
InKp_

The integration constant for this case can be read off Equ. 40, such
that

0 AG° AH® AS°
InK_ =— =— +
P RT RT R

(66)

Then, the intercept of the experimental curve with the ordinate axis
in the above plot indicates directly the quantity AS°/R.

In the simple case of a T-independent enthalpy change AH° in a
reaction, these thermodynamic properties can be deduced from a
measurement of the equilibrium constants at two temperatures.
Consider, for example, the dissociation of bromine into atoms:

Bro «»Br* + Br- (67)

The experimental equilibrium constants are

KO =

p

6-107* T =600K 68
1-107" T =800K (68)

From Equ. 40, it is easy to obtain the two values of the Gibbs Free
Energy
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-83 ) -600K -In(6-107%)=129kJ / mol
AG® =-RTInKS={  Kmol (69)
~83———-800K-In(1-107")=107kJ / mol
Kmol

for T =600 (top) and 800 K (bottom). From Equ. 65, one obtains a
value for AH° ;

0 Kg(T2 = 800K)
AH” =R-In| — =
K, (T, = 600K) (70)
-7
=83 J -In 10_12 ( 480000 JK=193kJ/moI
Kmol 6-107 ) \ 800 - 600

Using the relation AS° = (AH°-AG°)/T (cf Equ. 6), and the above
result for AH® and AG®°, one calculates

- 193-129 J
600 Kmol

AS°

=107J / Kmol (71)

One observes that the energy change AHC is large and positive,
I.e., dissociation of Br; is energetically unfavorable. Therefore, the
reaction would not proceed spontaneously, if the reaction vessel
were completely isolated from any surroundings. On the other hand,
the dissociated atoms have more degrees of freedom and more ac-
cessible states, such that the entropy would be larger than for the
molecule Br,. Giving the system access to the energy pool of a heat
bath of sufficiently high temperature, the dissociation reaction will
proceed, driven by the entropy increase.
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However, it should be emphasized again, that in general, AH°
Is a function of temperature. Then, from Equs. 63 and 64, one
would have to calculate

17,1 0 :
InK,(T)=In Kp(T1)+ETj1dT ?(AH (T)+AC,(T)  (72)

from the changes in the heat capacities of products and reactants
which all would have to be known.
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5 Pressure Dependence of Chemical Equilibrium

So far, only the temperature dependence of the equilibrium con-
stant K_ has been discussed. As far as any pressure dependence

of this constant is concerned, one expects none, essentially by def-
inition. After all, the equilibrium constant is defined in terms of
the constant standard-state pressures (p = 1bar). However, this
statement applies to partial pressures of the individual substances,
not to the total pressure of the reactive system. As a result, the
relative magnitudes of the partial pressures at equilibrium can and
usually do change with the applied total pressure, although the
equilibrium constant remains unchanged.

Consider, for example, the dissociation reaction
A, < 2A(0)

) (76)

J
Vo '

f=1-« 2a

l.e., a fraction f = « of the A2 molecules has dissociated, making
an additional pressure proportional to 2«. With a total pressure of
Prot, the partial pressures are calculated as

2a l-o

Pa :—05 " Prot and Pa, :m' Prot (77)

with the two partial pressures adding up to pwt. According to Equ.
V.41, the pressure equilibrium constant for this dissociation reac-
tion reads

2 2
O .
K, = N “ o) Prot (78)
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This equilibrium constant must not depend on the total pressure
Pt . Therefore, a change in this pressure results in a change of the
degree of dissociation a. The figure shows on a logarithmic scale

the depen-dence of the

‘The FunctionKy /pi I quantity Ko/pet on the
degree of dissociation «.

1000 | It is obvious that a raise

100 in total pressure prot

101 must lead to a decrease

f(o) L in @, in order to keep
0(.)61 K, constant. Fewer
0.001 molecules dissociate at

0 ! higher pressures, thus

0 0.5 1 keeping the number of

o moles of the gas mixture

In the system at the value
required by the EOS.

This pressure dependence of the equilibrium constant K; can be
quantified, using Equ. 1V.60 with the quantity 4n = (y+z)-(a+b)
defined as the difference in the number of moles of products and
reactants. Itis

JInK> (ﬁanoj Lﬁlnp j
0= p — X +An tot 79
[ﬁpmt j P )i\ PPy )oY

because of the independence of K; on the total pressure pir. Using
the ideal-gas EOS, it follows that
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AInK? Alnp AN AV
[ > ] = — An(ﬁ—totj - = RT (80)
Prot T Prot T Prot

This result is easy to interpret: If the reaction leads to an increase
in volume, i.e., if the volume of the products is greater than that
of the reactants by 4V > 0, then the equilibrium constant de-
creases with increasing total pressure pwot. The reaction becomes
less likely at higher pressures. According to the EQS, an increase
In pressure is equivalent to a decrease in the volume available to
the gas mixture. The gas mixture reacts to this change by reducing
the total number of particles in recombining some of the A atoms,
in order to retain equilibrium conditions. The inverse reaction, as-
sociated with a change in volume 4V < 0 becomes more likely.

It seems as if the system retracts from changes in the externally
imposed conditions and readjusts and counteracts these changes
(Principle of LeChatelier).
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6 Additivity of Chemical Reactions

According to a discussion of Hess’ Law, elsewhere, one can
“add”, more generally, linarly combine reactions and their ener-
getics, obtaining new a “sum”, “composite” or “chain” reaction.
This isa principle that is very important for the analysis of biological
systems, where enzymatic or catalytic reactions proceed via inter-
mediate steps.

As in this earlier discussion, consider the reactions A+B — E+F
and E+F — C+D connecting the initial state (A+B) of the (gaseous)
system with the final state (C+D), with known free energies G;. To
obtain the free energy for the overall "sum" process A+B — C+D,
one just has to add up the equations and the corresponding energies
of the individual reactions.

“Adding” formally the two stoichiometric equations represent-
ing chemical reactions

A+B - E+F AG; =G3-Gy (818.)
+ E+F 5 C+D AG; =Gy- Gz (81b)

results in
A+B 5 C+D  AG3 =A4G1+4G= Gy - Gy (81c)

and accordingly for the particularly interesting case involving all
substances in their standard states, when all energies G in Egs. 81
have to be replaced by the respective standard-state values G°. For
each partial reaction 81a and 81b, as well as for the sum reaction
81c, the associated equilibrium constants can be calculated accord-
ing to Equ. 40:

AG’=—RTIn(K?) (82)

and therefore,
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AG°=) AG] =—RT > In(K?) (83)

This is equivalent to the decomposition of the equilibrium con-
stant for the overall reaction in terms of the idividual constants:

Ko=T J(KD) =(K2) -(KD), - (84)

For practical applications, it is important to realize that only the
overall reaction constant needs to be large ( K; >1) in order to have

a spontaneous process. It is not necessary that all individual re-
actions in a chain are spontaneous!

The multiplicativity of equilibrium constants is often used to in-

fluence (shift) the equilibrium of a reactive system. For example,
if a reaction

1: A+B —>C+D (85)

leads to a desired end product C and a useless by-product D, one
can couple the above reaction with one, e.g.,

2: D—>E (86)
Reaction 2 converts D into something else (E) very efficiently,

implying that [E] = [D], and, hence, takes D out of the equilib-
rium. According to Equ. 84,

(K2, =(K®), (KO, z[[c].[o]lqu [E] :[[c].[E]]equ )

[Al[B] ), \[D] [Al[B]
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and therefore,

(Kp)>>(Ko), (88)

Consequently, component C is produced with a much higher yield
than in the original reaction (1), which is the desired result.



